
Homological algebra solutions Week 11

1. (a) It suffices to show that dn+1
cyl d

n
cyl = 0 for any integer n. The matrix of

this composition is given bydn+1
B idBn+2 0
0 −dn+2

B 0
0 −fn+2 dn+1

C

dnB idBn+1 0
0 −dn+1

B 0
0 −fn+1 dnC


=

dn+1
B dnB dn+1

B − dn+1
B 0

0 dn+2
B dn+1

B 0
0 fn+2dn+1

B − dn+1
C fn+1 dn+1

C dnC

 .
The matrix in the second line is 0 because B and C are cochain complexes
and f : B → C is a morphism of cochain complexes.

(b) The chain maps f, g : B → C are chain homotopic if and only if there
are maps {sn : Bn+1 → Cn}n∈Z such that

dnCs
n + sn+1dn+1

B = fn+1 − gn+1

for all n ∈ Z. Meanwhile, (f, s, g) : cyl(B) → C is a morphism of cochain
complexes iff

(fn+1, sn+1, gn+1)dncyl = dnC(f
n, sn, gn)

[
fn+1 sn+1 gn+1

] dnB idBn+1 0
0 −dn+1

B 0
0 −idBn+1 dnB

 =
[
dnC

] [
fn sn gn

]
 fn+1dnB
fn+1 − sn+1dn+1

B − gn+1

gn+1dnB

T =

dnCfndnCs
n

dnCg
n

T .
for all n ∈ Z. The first and third components of this matrix equation hold
because f and g are morphisms of cochain complexes. Thus, there exists
a family of maps {sn : Bn+1 → Cn}n∈Z such that (f, s, g) : cyl(B) → C
is a morphism of cochain complexes iff there exists a family of maps {sn :
Bn+1 → Cn}n∈Z such that

dnCs
n + sn+1dn+1

B = fn+1 − gn+1,

i.e., iff the maps f, g : B → C are chain homotopic.
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(c) We have βα = idB , thus to show that α is a chain homotopy equiva-
lence, it suffices to show that αβ is chain homotopic to idcyl(B). For each
integer n, we define sn : cyl(B)n+1 → cyl(B)n by sn(b′, b′′, b) = (0, b, 0),
i.e., sn can be represented by the matrix

sn =

0 0 0
0 0 idBn+1

0 0 0

 .
We just have to confirm that dncyl(B)s

n + sn+1dn+1
cyl(B) = αn+1βn+1 −

idcyl(B)n+1 for any integer n. Since αβ(b′, b′′, b) = α(b′ + b) = (b′ + b, 0, 0),
we can represent αn+1βn+1 by the matrix

αn+1βn+1 =

idBn+1 0 idBn+1

0 0 0
0 0 0

 .
Thus

αn+1βn+1 − idcyl(B)n+1 =

0 0 idBn+1

0 −idBn+2 0
0 0 −idBn+1

 . (1)

Also, we have

dncyl(B)s
n + sn+1dn+1

cyl(B)

=

dnB idBn+1 0
0 −dn+1

B 0
0 −idBn+1 dnB

 sn + sn+1

dn+1
B idBn+2 0
0 −dn+2

B 0
0 −idBn+2 dn+1

B


=

0 0 idBn+1

0 0 −dn+1
B

0 0 −idBn+1

+

0 0 0
0 −idBn+2 dn+1

B

0 0 0


= αn+1βn+1 − idcyl(B)n+1 ,

by (1), as needed.

(d) As before, we have βα′ = idB , thus to conclude that α′ is a chain
homotopy equivalence, it suffices to show that α′β is chain homotpic to
idcyl(B). SinceK(A) is a category, we know that composition of morphisms
is compatible with chain homotopy. Thus:

α′β ∼ idcyl(B)α
′β ∼ (αβ)α′β ∼ αβ ∼ idcyl(B),

as needed.

Now we wish to find maps {tn : cyl(B)n+1 → cyl(B)n}n∈Z such that

dncyl(B)t
n + tn+1dn+1

cyl(B) = (α′)n+1βn+1 − idcyl(B)n+1 . (2)
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Define a chain map φ : cyl(B) → cyl(B) by φn(x, y, z) = (−z, y,−x) for
x, z ∈ Bn and y ∈ Bn+1. This is in fact a chain map because

dncyl(B)φ
n =

dnB idBn+1 0
0 −dn+1

B 0
0 −idBn+1 dnB

 0 0 −idBn

0 idBn+1 0
−idBn 0 0


=

 0 idBn+1 −dnB
0 −dn+1

B 0
−dnB −idBn+1 0


=

 0 0 −idBn+1

0 idBn+2 0
−idBn+1 0 0

dnB idBn+1 0
0 −dn+1

B 0
0 −idBn+1 dnB


= φn+1dncyl(B).

We also note that (i) φφ = idcyl(B), (ii) φα = −α′, and (iii) βφ = −β.
Recall that the maps {sn : cyl(B)n+1 → cyl(B)n}n∈Z from the previous
subexercise of this problem satisfy for all n ∈ Z:

dncyl(B)s
n + sn+1dn+1

cyl(B) = αn+1βn+1 − idcyl(B)n+1

dncyl(B)(φ
nsnφn+1) + (φn+1sn+1φn+2)dn+1

cyl(B) = (α′)n+1βn+1 − idcyl(B)n+1 .

Thus if for each integer n we define tn : cyl(B)n+1 → cyl(B)n by tn =
φnsnφn+1, then the desired equation (2) is satisfied. Specifically, for x, z ∈
Bn+1 and y ∈ Bn+2, we have

tn(x, y, z) = φnsn(−z, y,−x) = φn(0,−x, 0) = (0,−x, 0).

2. (a) We first determine the mapping cone cone(0A) of 0A : A → A. The
object in degee n of the complex cone(0A) is A

n+1⊕An, and the differential
dn : cone(0A)

n → cone(0A)
n+1 is defined to be

dn = (−dn+1
A , dnA). (3)

Recall that the translate A[−1] has nth object A[−1]n = An+1 and nth dif-
ferential −dn+1

A . Thus cone(0A) is precisely the cochain complex A[−1]⊕
A. It follows that we have a strict (and therefore exact) triangle

A[−1]⊕A

A A.
0A

Next, we find an exact triangle for the identity morphism 1A : A → A.
The mapping cone cone(1A) of the identity on A is by definition the cone
cone(A) of the complex A. In Week 4 (cf. Proposition 3.9 of Week 4’s lec-
ture notes), we saw that cone(A) is split exact and therefore contractible.
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Hence there is a homotopy equivalence h : cone(1A) → 0•, where 0• is the
zero cochain complex. Thus we have a diagram

A A 0• A[−1]

A A cone(1A) A[−1],

1A

1A 1A h

1A

in which the vertical maps are homotopy equivalences and each square
commutes up to homotopy. We conclude that the triangle

0•

A A
1A

is exact.

(b, i) We first assume that the triangle (u, v, w) on A,B,C is the strict
triangle on u : A → B, i.e., C = cone(u) and v : B → cone(u) and
w : cone(u) → A[−1] are the usual maps. We want to find a homotopy
equivalence β : A[−1] → cone(v) such that we have a diagram

B C A[−1] B[−1]

B C cone(v) B[−1]

v

1

w

1

−u[−1]

β 1

v w′ δ

(4)

that commutes up to homotopy, where the bottom row is the strict triangle
on v : B → C. We first clarify what the complex cone(v) is. Its nth object
is

cone(v)n = Bn+1 ⊕ Cn = Bn+1 ⊕ cone(u)n = Bn+1 ⊕An+1 ⊕Bn,

and its nth differential is

dn =

[
−dn+1

B 0
−vn+1 dncone(u)

]
=

 −dn+1
B 0 0
0 −dn+1

A 0
−idBn+1 −un+1 dnB

 .
Define β : A[−1] → cone(v) by letting βn : An+1 → cone(v)n be the
morphism βn = (−un+1, idAn+1 , 0) for each n ∈ Z. This is a chain map
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because for any n:

βn+1dnA[−1] = −βn+1dn+1
A

=

un+2dn+1
A

−dn+1
A

0


=

dn+1
B un+1

−dn+1
A

0


=

 −dn+1
B 0 0
0 −dn+1

A 0
−idBn+1 −un+1 dnB

−un+1

idAn+1

0


= dncone(v)β

n.

Next, define γ : cone(v) → A[−1] by letting γn : cone(v)n → An+1 be
the morphism γn = (0, idAn+1 , 0). This is a morphism of chain complexes
because

dnA[−1]γ
n = (0,−dn+1

A , 0)

= (0, idAn+2 , 0)

 −dn+1
B 0 0
0 −dn+1

A 0
−idBn+1 −un+1 dnB


= γn+1dncone(v).

Moreover, we have γβ = idA[−1], thus to show that β : A[−1] → cone(v)
is a homotopy equivalence, it suffices to show that βγ is homotopic to the
identity on cone(v). For each integer n, define sn : cone(v)n+1 → cone(v)n

by (x, y, z) 7→ (z, 0, 0). Then:

dncone(v)s
n + sn+1dn+1

cone(v) = −dn+1
B 0 0
0 −dn+1

A 0
−idBn+1 −un+1 dnB

0 0 idBn+1

0 0 0
0 0 0


+

0 0 idBn+2

0 0 0
0 0 0

 −dn+2
B 0 0
0 −dn+2

A 0
−idBn+2 −un+2 dn+1

B


=

0 0 −dn+1
B

0 0 0
0 0 −idBn+1

+

−idBn+2 −un+2 dn+1
B

0 0 0
0 0 0


=

−idBn+2 −un+2 0
0 0 0
0 0 −idBn+1

 .

(5)
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On the other hand, we have βnγn(x, y, z) = βn(y) = (−un+1(y), y, 0),
thus:

βn+1γn+1 − idcone(v)n+1

=

0 −un+2 0
0 +idAn+2 0
0 0 0

−

idBn+2 0 0
0 idAn+2 0
0 0 idBn+1


=

−idBn+2 −un+2 0
0 0 0
0 0 −idBn+1


= dncone(v)s

n + sn+1dn+1
cone(v),

by (5), and we conclude that βγ is homotopic to idcone(v). Thus β :
A[−1] → cone(v) is a homotopy equivalence. It remains to show that
the squares in (4) commute up to homotopy. We first note that for x ∈
A[−1]n = An+1, we have

δnβn(x) = δn(−un+1(x), x, 0) = −un+1(x) = −u[−1]n(x),

thus δβ = −u[−1], and the right square in (4) commutes. Since the left
square commutes trivially, it remains to check that the central square
commutes up to homotopy, i.e., βw ∼ w′. Recalling that w : cone(u) →
A[−1] is the usual map from the mapping cone of u : A → B to A[−1],
we find γw′ = w, thus γw′ ∼ w. But γ is a homotopy equivalence and its
inverse is β, thus w′ ∼ βw, as needed. This completes the proof that

A[−1]

B C

−u[−1]

v

w (6)

is exact when (u, v, w) is a strict triangle on A,B,C. Since an exact
triangle is by definition isomorphic to a strict triangle, the rotate in (6)
remains exact when (u, v, w) is an exact triangle on A,B,C.

(b, ii) Once again, we assume that the triangle (u, v, w) on A,B,C is the
strict triangle on u : A → B, i.e., C is the mapping cone of u. We let δ
be the map −w[1] : C[1] → A, and want to find a homotopy equivalence
σ : B → cone(δ) such that the diagram

C[1] A B C

C[1] A cone(δ) C

δ

1

u

1

v

σ 1

δ u′ v′

commutes up to homotopy. We first demonstrate that cone(δ) = cyl(u).
For any integer n, we have

cone(δ)n = C[1]n+1 ⊕An = Cn ⊕An = An+1 ⊕Bn ⊕An ∼= cyl(u)n.
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Moreover, the differential dncone(δ) : cone(δ)
n → cone(δ)n+1 is

dncone(δ) =

[
−dn+1

C[1] 0

−δn+1 dnA

]
=

[
dnC 0
wn dnA

]
=

−dn+1
A 0 0

−un+1 dnB 0
idAn+1 0 dnA

 .
It is straightforward to verify that the maps ϑk : cone(δ)k → cyl(u)k given
by ϑk(x, y, z) = (z, x, y) define an isomorphism ϑ : cone(δ) → cyl(u) of
chain complexes. Our task thus becomes to find a homotopy equivalence
σ̃ : B → cyl(u) such that the diagram

C[1] A B C

C[1] A cyl(u) C

δ

1

u

1

v

σ̃ 1

δ ũ ṽ

(7)

is commutative up to homotopy, where ũ : A→ cyl(U) is the inclusion of
A in cyl(u) and ṽ : cyl(u) → C is the projection.

Before continuing, we note that subexercise (d) of Problem 1 holds in a
more general context (cf. Exercise 1.5.4 in Weibel): if u : A → B is a
morphism of chain complexes, and we define a map α′ : B → cyl(u) by
α′(b) = (0, 0, b) and a map β : cyl(u) → B by β(a′, a, b) = f(a′) + b,
then α′ is a homotopy equivalence with inverse β. In particular, we may
define σ̃ : B → cyl(u) to be the map α′ to obtain a homotopy equivalence
such that the diagram in (7) commutes up to homotopy. Indeed, we have
v = ṽσ̃, so the right square in (7) commutes. As for the central square,
we have βũ = u, thus

βũ ∼ u =⇒ ũ ∼ σ̃u,

since σ̃ is the inverse of the homotopy equivalence β. This completes the
proof that given a strict triangle (u, v, w) on A,B,C, the rotate

B

C[+1] A

v

−w[1]

u

is an exact triangle, and by the same reasoning as before, we conclude
that this remains true when (u, v, w) is only an exact triangle on A,B,C.

3. We let Z/2[0] and Z/4[0] be the cochain complexes concentrated in degree
0. The claim is that there is no morphism w : Z/2[0] → Z/2[−1] such that

Z/2[0]

Z/2[0] Z/4[0]

w

2

1
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is an exact triangle. We suppose toward a contradiction that there is such
a w.

Let φ : Z/2[0] → Z/4[0] be the extension of the map Z/2 2→ Z/4. Then
the exactness of (φ, 1, w) on Z/2[0],Z/4[0],Z/2[0], the exactness of the
strict triangle on φ : Z/2[0] → Z/4[0], and the the TR3 axiom of the
triangulated category K(A) yield a morphism ψ : Z/2[0] → cone(ψ) such
that the following diagram commutes

Z/2[0] Z/4[0] Z/2[0] Z/2[−1]

Z/2[0] Z/4[0] cone(φ) Z/2[−1].

φ

1

1

1

w

∃ψ 1

φ

The 5-lemma for exact triangles tells us that ψ is in fact a homotopy equiv-
alence. Thus we have a quasi-isomorphism between Z/2[0] and cone(φ).
But H−1(Z/2[0]) = {0}, whereas

H−1(cone(φ)) =
ker(Z/2 2→ Z/4)
im(0 → Z/2)

= ker(Z/2 2→ Z/4) ̸= {0}.

This contradiction tells us that there is no morphism w such that (2, 1, w)
is an exact triangle on (Z/2,Z/4,Z/2).

4. Let D be a triangulated category, and suppose we have a diagram

A B C TA

A′ B′ C ′ TA′

u

g

v w

u′ v′ w′

,

where the rows are exact triangles. We assume that v′gu = 0, we want to
show that there are maps f : A→ A′ and h : C → C ′ which assemble with
g to get a map of exact triangles, i.e. fit into the commutative diagram

A B C TA

A′ B′ C ′ TA′

u

f g

v w

h Tf

u′ v′ w′

.

To do this, recall that for all X ∈ D, we have that Hom(X,−) : D → Ab is
a cohomological functor. In particular the following is an exact sequence
of abelian groups

Hom(A,A′) Hom(A,B′) Hom(A,C ′) Hom(A, TA′)
(u′)∗ (v′)∗ (w′)∗

.

The assumptions imply that gu ∈ Hom(A,B′) is mapped to 0 in Hom(A,C ′).
By exactness this gives a map f : A→ A′ such that post-composing with
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u′ yields the composition gu. Now axiom (TR3) gives us a map h : C → C ′

such that
A B C TA

A′ B′ C ′ TA′

u

f g

v w

h Tf

u′ v′ w′

commutes, which is what we wanted to show. This concludes the proof of
this exercise.

5. Let A be an abelian category, and consider the category of graded A-
objects viewed as the functor category AZ, where Z is the set Z viewed
as a discrete category. There is an obvious automorphism AZ → AZ

given by precomposing a functor Z → A by the the “+1” map, so that
T (A•)n = An−1 for some Z-graded object in A. We call a triangle
(A•, B•, C•, u, v, w) exact if for all n the sequence

An
u−→ Bn

v−→ Cn
w−→ An−1

is exact in A.
Consider the case A = Ab, we claim that in this case the category of
graded objects with the degree shift automorphisms satisfies (TR1) and
(TR2), but not (TR3). The fact that satisfies (TR2) is immediate, and as

such we omit the details. Now suppose we have a morphism A•
u•−→ B•,

we want to fit it in an exact triangle. For this, the graded object Cn =
coker(un)⊕An−1 will do the job. Indeed, for the map B• → C• in degree
n take the composite Bn → coker(un) → coker(un) ⊕ An−1, and for the
map C• → A•−1 in degree n take the obvious projection map. It is now
clear from the fact that exactness in a functor category can be checked
objectwise that the image of B• → C• is the kernel of C• → A•−1.
We now show that this category doesn’t satisfy (TR3). Notice that exact
triangles (A•, B•, C•) with A• concentrated in degree −1 and both B•
and C• concentrated in degree 0 correspond to short exact sequences of
abelian groups in an obvious way, and under this correspondence, if our
category AZ were to satisfy (TR3) then any partial map of short exact
sequences of abelian group

0 B0 C0 A−1 0

0 B′
0 C ′

0 A′
−1 0

,

could be completed into a map of short exact sequences

0 B0 C0 A−1 0

0 B′
0 C ′

0 A′
−1 0

.
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This would in particular enable us to obtain a commutative diagram

0 Z/2Z Z/4Z Z/2Z 0

0 Z/2Z Z/2Z× Z/2Z Z/2Z 0

Id Id ,

which would by the 5 lemma imply that Z/4Z ∼= Z/2Z × Z/2Z, which is
obviously false, thus yielding the desired contradiction.
We will now show that if instead A is the category of vector spaces over a
field, then the category of graded objects with the shift automorphism is
in fact a triangulated category. The fact that axiom (TR1) and (TR2) are
satisfied follow by a reasoning perfectly analogous to the abelian group
case. Now let us show that (k − Vect)Z satisfies (TR3). Assume we have
a partial map of exact triangles

U• V• W• U•−1

U ′
• V ′

• W ′
• U ′

•−1

.

We need to find a map W• → W ′
• making the above diagram commute.

This is equivalent to defining maps wn for all n ∈ Z fitting in the following
commutative diagrams with exact rows

Un Vn Wn Un−1

U ′
n V ′

n W ′
n U ′

n−1

.

The fact that there exists a map wn : Wn → W ′
n making the above dia-

gram commutes follows from basic linear algebra.
Finally, we show that this category satisfies the (TR4) axiom. To do this
we introduce a different perspective on this axiom than the one seen in
class, coming from the stacks project [stacks-project]. We want to insist
on the fact that this is nothing more than a shift in perspective.
Suppose D is a category with an automorphism T : D → FD and col-
lection of distinguished triangles. We say that it satisfies (TR4) if given

two composable morphisms A
f−→ B

g−→ C and distinguished triangles
(A,B,Q1, f, p1, d1), (A,C,Q2, g ◦ f, p2, d2) and (B,C,Q3, g, p3, d3), then
there exists a fourth distinguished triangle (Q1, Q2, Q3, a, b, T (p1) ◦ d3).
And furthermore we require that the triple

(IdX , g, a) : (X,Y,Q1, f, p1, d1) → (X,Z,Q2, g ◦ f, p2, d2)

is a morphism of triangles and

(f, IdZ , b) : (X,Z,Q2, g ◦ f, p2, d2) → (Y,Z,Q3, g, p3, d3)
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as well. When using (TR4), we will allow ourselves to only refer to the
morphism f, g as input, leaving the rest of the input as implicit.
We now prove that the category of graded vector spaces with the degree
shift automorphism satisfies (TR4). First notice that by the (standard) 5-
lemma and (TR2), up to isomorphism any exact triangle (V•, V

′
• , V

′′
• , a, b, c)

of graded vector spaces can be identified with (V•, V
′
• , coker(a•)⊕V•−1, a, ι◦

q, π), where ι : coker(a•) → coker(a•) ⊕ V•−1 is the obvious inclusion,
q : B → coker(a•) is the canonical map and π : coker(a•)⊕ V•−1 → V•−1

is the obvious projection. With this in hand, we see that we may start
with a diagram of the form

U• V• V•/U• ⊕ U•−1 U•−1

W• W•/U• ⊕ U•−1 U•−1

W•/V• ⊕ V•−1 V•−1

f

g◦f
g

where we denote the cokernel of a map by the quotient of the codomain by
the domain and where the sequences of composable moprhisms which look
like exact triangles are exact triangles. If we construct an exact triangle
on the second to last column, along with some moprhisms of triangles, we
will be done. This will be given by the following triangle, where we will
detail the definitions of the morphisms but will leave the verification of
exactness to the reader

V•/U•⊕U•−1
g̃⊕Id−−−→W•/U•⊕U•−1

q⊕f−−−→W•/V•⊕V•−1
q◦π−−→ V•−1/U•−1⊕U•−2.

So as to not overclutter the notation, we have omitted placeholder sub-
scripts in our notation. We now detail all the maps: the map g̃ is the
map induced by g on the quotients; the map q : W•/U• → W•/V• is the
obvious quotient map; the map π : W•/V• ⊕ V•−1 → V•−1 is the obvious
projection map; and q : V•−1 → V•−1/U•−1 is the obvious quotient map.
As we stated above, we leave the verification that all of these maps make
(V•/U• ⊕ U•−1,W•/U• ⊕ U•−1,W•/V• ⊕ V•−1) an exact triangle.
It only remains to verify that

(Id, g, g̃ ⊕ Id) : (U•, V•, V•/U• ⊕ U•−1 → (U•,W•,W•/U• ⊕ U•−1)

and

(f, Id, q ⊕ f) : (U•,W•,W•/U• ⊕ U•−1) → (V•,W•,W•/V• ⊕ V•−1)

are moprhisms of exact triangles (we have allowed ourselves the abuse of
notation of only referring to the objects of the exact triangles). But of
these are completely obvious from our choice of maps.
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6. Let D be a triangulated category and consider a commutative square in
this category

A B

A′ B′

u

i

.

We want to show that we can always extend such a square to a diagram

A B C TA

A′ B′ C ′ TA′

A′′ B′′ C ′′ TA′′

TA TB TC T 2A

u

i j k

Tu

v Tv

w Tw

Ti Tj Tk

where all the rows and columns are exact triangles and all the squares
commute except the bottom right one which anti-commutes. We will
allow ourselves the abuse notation of suppressing the morphisms when
specifying a triangle. First, we use four applications of (TR1) to extend
our square to the commutative diagram

A B C TA

A′ B′ C ′ TA′

A′′ B′′ TA′′

TA TB TC T 2A

u

i j k

Tu

v Tv

w Tw

Ti Tj Tk

.

The commutativity of this diagram follows from the fact that the com-
posite of two morphism of an exact triangle are 0. To conclude, we want
to use axiom (TR4), and to do this, we add a temporary object, which
will be useful in constructing the remaining morphisms, but won’t appear
in our final diagram. This object is obtained by applying axiom (TR1)
to the map A → B′, yielding the following diagram (where we have also

12



added names to all of our maps for convenience):

A B C TA

A′ B′ C ′ TA′

A′′ D TA′′

B′′ TA

TA TB TC T 2A

u

i

f

j k

Tu

α

v m

g

β γ

Tv

w

n

Tw

h

Ti Tj Tk

.

We will use the variant on axiom (TR4) mentionned in the previous ex-
ercise, which we do not recall here. First we have two applications of

(TR4). One on the composition A
i−→ B

f−→ B′ and one on the com-

position A
u−→ A′ α−→ B′. The first of these gives us an exact triangle

(C,D,B′′, t1, s1, T (j) ◦ h) along with the maps of triangles

(Id, f, t1) : (A,B,C) → (A,B′, D)

and
(i, Id, s1) : (A,B

′, D) → (B,B′, B′′).

The second application of (TR4) gives us an exact triange (A′′, D,C ′, t2, s2, T v◦
γ) along with maps of triangles

(Id, α, t2) : (A,A
′, A′′) → (A,B′, D)

and
(u, Id, s2) : (A,B

′, D) → (A′, B′, C ′).

Now considering the composite s1 ◦ t2 : A′′ → B′′, and applying (TR1) to
get an exact triangle (A′′, B′′, C ′′, s1◦t2, σ, τ) and (TR2) on (C,D,B′′, t1, s1, T (j)◦
h) to get an exact triangle (D,B′′, TC, s1, T (j) ◦ h,−Tt1), we have the
necessary set up to apply (TR4) to the composition s1 ◦ t2. This gives us
an exact triangle (C ′, C ′′, TC, p, q, Ts2 ◦ (−Tt1)), and two morphisms of
triangles

(Id, s1, p) : (A
′′, D,C ′) → (A′′, B′′, C ′′)

and
(t2, Id, q) : (A

′′, B′′, C ′′) → (D,B′′, TC).

We can rotate the triangle (C ′, C ′′, TC, p, q, Ts2 ◦ (−Tt1)), to obtain the
triangle (C,C ′, C ′′, s2 ◦ t1, p, q). We can use all of this to construct the

13



following diagram, whose commutativity will occupy us for the rest of this
exercise

A B C TA

A′ B′ C ′ TA′

A′′ B′′ C ′′ TA′′

TA TB TC T 2A

u

i

f

j k

s2◦t1 Tu

α

v g

β γ

p Tv

w

s1◦t2

h

σ τ

q Tw

Ti Tj Tk

.

In what follows we will refer to triangles only by their objects. Commu-
tativity of the three squares of the first column follows from composing
the morphisms of triangles (A,A′, A′′) → (A,B′, D) and (A,B′, D) →
(B,B′, B′′). Similarly, the three sqaures of the top row commute by com-
posing the morphisms of triangles (A,B,C) → (A,B′, D) and (A,B′, D) →
(A′, B′, C ′). The middle square commutes, by adding D in the middle,
and the fact that in the following diagram all 4 triangles commute, as
can be seen by inspecting the various morphisms of triangles (TR4) has
granted us

B′ C ′

D

B′′ C ′′

β

g

m

p

s2

s1 p◦s2

σ

.

The bottom middle square commute thanks to the morphism of triangles
(A′′, B′′, C ′′) → (D,B′′, TC) and because the map B′′ → TC is T (j) ◦ h.
Similarly, the middle right square commutes thanks to the map of triangles
(A′′, D,C ′) → (A′′, B′′, C ′′) and the fact that the map C ′ → TA′′ factors
as C ′ → TA→ TA′′. For anticommutativity of the bottom right diagram,
because (A′′, B′′, C ′′) → (D,B′′, TC) is a morphism of triangles, we have
that the following square commutes

C ′′ TA′′

TC TD

τ

q Tt2

−Tt1

.

We can now post compose by Tn : TD → T 2A, which because (A,A′, A′′) →
(A,B′, D) and (A,B,C) → (A,B′, D) are morphisms of triangles, gives
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us a diagram

C ′′ TA′′

TC TD

T 2A

τ

q Tt2

Tw
−Tt1

Tk

Tn

,

which proves the deisred anticomutativity. This concludes the exercise.

15


